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Figure 1: Museum guide systems using a smartphone. (a) User wears a smartphone for environmental sensing,. (b) Direct system
interface activated upon exhibit recognition, with audio description controls. (c) User browsing chapters on the phone. (d)
Immersive system’s virtual space with annotated locations. (e) User touching an exhibit, guided by the immersive system.

ABSTRACT

Guiding blind visitors to navigate and comprehend exhibits is cru-
cial in museums. Two paradigms of smartphone-based guide sys-
tems have emerged: one provides direct interaction with turn-by-
turn navigation and screen reader-controlled audio description,
while the other offers immersive experiences with spatialized sound
navigation and automatically playing audio content. However, it
remains unclear which system better supports museum experi-
ences. In a comparative study at a science museum with seven blind
participants experiencing both systems, we found that immersive
spatialized sound was more effective and preferred for navigation.
For information provision, participants valued audio autoplay’s
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minimal operation but expressed a need for on-demand direct con-
trol. The touch instructions provided by both systems were found
inadequate for aiding interactions with tactile exhibits. Our findings
suggest that a hybrid system, which adds direct interaction to the
immersive experience and is adaptable to both environment and
user requirements, could enhance the museum experience for blind
visitors.
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1 INTRODUCTION

Museums are enhancing their accessibility to blind visitors through
specialized tours [34, 57] and tactile, multisensory exhibits [15, 37].
Despite the progress, the complexity of museum environments still
necessitates human assistance for navigation and information pro-
vision [32]. Blind visitors, however, aspire to an independent expe-
rience, exploring the space and engaging with exhibits at their own
pace without the constant need for a human guide [43]. Technolo-
gies have been proposed to foster independence and autonomy in
blind people’s daily lives, including mobility assistance [44, 47] and
audio descriptions of surroundings [52]. They have been adapted
to museums [10, 43] to provide an independent visiting experience.
Smartphone-based guide systems that employ built-in cameras
and sensors are gaining popularity due to their cost-effectiveness
and independence from additional hardware like Bluetooth bea-
cons [20, 23, 73]. Two distinct approaches have emerged in the
design of these systems’ user experience. The first approach fo-
cuses on direct interaction, leveraging established accessibility fea-
tures like built-in screen readers such as iPhone’s VoiceOver. This
method provides language-based turn-by-turn navigation and ac-
cessible buttons to manage audio descriptions converted from text,
ensuring clarity and practicality across diverse settings outside of
museums [2, 10, 76]. On the other hand, another novel approach
emerging in museums is to offer an immersive experience through
audio-augmented reality. These systems guide users to a target loca-
tion with spatialized audio cues and then activate the audio descrip-
tion or ambient sounds automatically based on the user’s location
and orientation in relation to the exhibits, significantly reducing
the need for explicit system instructions or user input [41, 74].
While individual systems have shown promise, a comprehensive
comparison between direct and immersive paradigms is lacking.
Regarding navigation, spatialized sound was favored in a study
for its effectiveness, with turn-by-turn instructions a close sec-
ond [50]. Meanwhile, turn-by-turn navigation has been widely
implemented for its straightforwardness in conveying precise in-
formation [2, 10, 76]. Museums, however, pose unique challenges
with their closely arranged exhibits and irregular layouts, neces-
sitating frequent navigation and orientation adjustments. As an
integral part of the museum experience, navigation should also be
enjoyable, with minimal cognitive demand. Regarding information
provision, user-controlled audio descriptions have proven benefi-
cial [1], while studies suggest that auto-activated audio-augmented
reality enhances engagement and memorization [41, 74] although
such findings mainly involve sighted individuals. Consequently,
which type of museum guide system—direct or immersive—is best
suited for the unique museum environment remains inconclusive.
To address this research gap, our study is among the first to com-
pare different smartphone-based guide methods within a dynamic
museum context. We evaluated two robust guide applications, col-
laboratively developed by academic and industrial teams, represent-
ing direct and immersive paradigms. The direct guide is an iPhone
application that employs VoiceOver for turn-by-turn navigation
and a user interface to control text-to-speech audio descriptions
tied to specific exhibits, organized into chapters (Figure 1b and c).
In contrast, the immersive guide leverages spatialized sound for
navigation and automatically plays vivid and expressive human
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narration and ambient sounds upon arrival at exhibits (Figure 1d
and e). We compared the paradigms and unique features through
the following research questions:

RQ 1. Direct vs. immersive: Which smartphone-based guide system
is preferred for visiting a museum exhibition? In particular:
RQ 1.1 Turn-by-turn vs. spatialized sound: Which navigation guide
type facilitates effective travel within an exhibition?
RQ 1.2 Button controls vs. audio autoplay: Which interface type
provides efficient information provision?

Moreover, museums are increasingly offering tactile exhibits
for touch-based exploration [15, 37]. Despite braille labels, such
exploration often demands assistance. Interactive audio label in-
novations [28, 66] have promised autonomy but require additional
preparations. Nonetheless, many current guide systems default
to basic touch instructions without interactive feedback, which
was adopted by both systems in our comparison. To evaluate their
effectiveness and to identify potential improvements, we also in-
vestigated the following question:

ROQ 2. Accessible exhibits: How effective are touch instructions,
and how can interactions be improved with tactile exhibits?

We implemented both systems in a science museum showcasing
cutting-edge scientific themes. Each system was implemented in an
exhibition, with tactile exhibits at most stops. We recruited seven
totally blind participants to test both systems and collected data
on their ratings and behaviors from video analysis. Our findings
indicate a preference for spatialized sound in navigation, since it
allowed for natural orientation adjustments while walking (RQ1.1).
Although information delivery by either autoplay or manual button
controls was comprehensible and enjoyable, participants preferred
vivid narration to monotone VoiceOver and desired fewer button
interactions to maintain tactile engagement. Meanwhile, autonomy
in information access was crucial, indicating the need for control
within immersive experiences (RQ1.2). There was a desire for a sys-
tem that seamlessly blends immersive and direct elements—offering
immersion by default and direct control upon user request while
also adapting to user preferences and environmental factors (RQ1).
The study also revealed that with only touch instructions, partici-
pants often missed tactile exhibits. Real-time overviews, accurate
locational feedback, and detailed interactive guidance could en-
hance engagement with accessible exhibits (RQ2). Leveraging these
insights, we propose a set of design considerations to advance guide
systems that support the independence of blind museum visitors.

2 BACKGROUND AND RELATED WORKS
2.1 Museum Accessibility for Blind Visitors

Museums play a vital role in society, serving not only as exhibitors
of historical and artistic artifacts but also as inclusive spaces that
promote social engagement and empowerment [14, 36, 58, 59]. Peo-
ple with visual impairments are keen to engage with museum
exhibits [9, 15, 16, 33] yet face considerable barriers. Accessibility
needs span physical, sensory, and intellectual dimensions [68] and
encompass wayfinding, tactile and multisensory exhibits, informa-
tion in accessible formats, as well as staff assistance [9, 32, 37, 54].

Currently, efforts are underway in museums to improve acces-
sibility for visually impaired visitors. These include the provision
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of guided tours and educational workshops [11, 15, 34, 57], the
creation of accessible exhibits that engage other senses beyond
sight [15, 37, 40, 67, 72], and the development of comprehensive
audio descriptions [18, 26, 29]. Nonetheless, challenges remain, par-
ticularly for totally blind visitors. Guided tours are not always read-
ily available, typically necessitating advance reservations [13, 15].
Tactile exhibitions often need additional explanations for full in-
tellectual comprehension, provided either by sighted guides or
through braille, although space for braille is often limited [56, 65]
and not all blind people can read braille [60]. Furthermore, while
audio guides provide valuable information, they frequently lack
integration with the necessary wayfinding capabilities, hindering
blind visitors from locating exhibits independently [10, 43]. The
reliance on limited human resources for assistance with navigation
and exhibit comprehension continues to be a significant barrier to
the autonomous museum visits blind visitors desire [9, 32, 43].

Technological innovations for independent navigation, accessi-
ble information, and tactile engagement have been proposed. They
are essential for creating user-friendly, independent, and enjoyable
museum experiences for blind visitors.

2.2 Mobility Assistance Technologies

Mobile applications and robotics have been developed to guide
visually impaired users to their destinations and help them avoid
obstacles [44, 47, 52]. These innovations have been adapted for
museums to facilitate wayfinding among exhibits [10, 39, 43, 55]. In-
door localization methods, such as Bluetooth beacons [2, 10, 45, 55]
and RFID/IR sensors [4, 27], support wayfinding despite their use
requiring the installation of external devices within the museum
setting. In contrast, computer vision-based systems [51, 73], IMU
sensors [5, 20], and visual-inertial odometry [23, 24] offer localiza-
tion through wearable sensors, enabling users to employ their own
or provided smartphones for an enhanced museum experience.

On the user experience front, turn-by-turn audio instructions
have been generally employed, capitalizing on the directness and
descriptiveness of human language [2, 10, 55, 76]. Spatialized audio
is another method that has grown in popularity, efficiently convey-
ing multidimensional data by indicating the location of destinations
or objects [24, 42, 49, 53, 76]. Additionally, navigation robots [31]
can serve as guides in museums, reducing cognitive load com-
pared to audio instructions [43]. However, such robots come at a
higher cost compared to audio-guided navigation apps available
on smartphones. Comparative research by Loomis et al. [50] evalu-
ated the navigation effectiveness of different modes and found that
spatialized audio was the most effective and preferable, although
turn-by-turn remained a close second. Klatzky et al. [46] found no
significant difference between these modes under the condition of
no cognitive load, but navigating with spatialized sound performed
better when cognitive load was introduced. Nevertheless, turn-by-
turn navigation remains prevalent due to its simplicity in providing
precise route information, and spatialized audio cues may be too
faint to hear clearly if the source is too distant [2, 76].

However, museums offer environments that differ significantly
from the lab spaces or office floors typically used for indoor naviga-
tion studies, containing booths and divided rooms where exhibits
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are closely arranged [22, 70]. In such spaces, visitors often navi-
gate short distances, must finely adjust their orientation to face
exhibits, and frequently pause to navigate through crowds. Cogni-
tive load should also be minimal to avoid detracting from the user’s
enjoyment of the exhibitions [43]. Moreover, it remains unknown
whether these smartphone-based navigation instructions perform
differently in museums.

2.3 Information Provision and Accessible
Exhibitions

Audio guides, now common in museums, enhance exhibition un-
derstanding and are typically available through rented devices or
visitors” smartphones [25, 61]. However, audio guides designed for
sighted users may lack the features needed for blind people. To
effectively serve them, audio guides should integrate navigation
functions [10, 43], be easy to learn and use [1], and support an
engaging information acquisition experience [38, 62].

There are two primary methods for delivering audio guides: one
involves a control interface, and the other triggers and stops auto-
matically. Navilens! offers a user interface that lets visitors choose
what to listen to from a list of artifacts. Ahmetovic et al. [1] in-
troduced MusA, an interface-based system providing interactive
artwork descriptions via touch on a smartphone screen. In contrast,
other research has explored environmental audio augmentation
without explicit interfaces. Bederson [12] developed one of the first
electronic museum guide prototypes that supplied audio content
automatically based on the visitor’s location. Yang et al. [74] en-
hanced sensory experiences in art by delivering spatialized audio
cues, such as birdsong or pouring milk, through headphones that
varied based on the user’s location and direction relative to the art-
work. Kaghat et al. [41] further personalized content delivery with
an adaptive system, where the type of sound played is responsive
to user interest as indicated by head gestures. These automatic sys-
tems were found to be user-friendly and enjoyable among sighted
visitors, yet their effectiveness for blind visitors, who do not rely
on visual context, remains to be investigated.

Increasing the accessibility of exhibits is also crucial for blind
visitors [6, 15, 37, 69]. Integrating tactile objects with audio labels
activated by touch has proven effective for learning [28, 35, 64].
Technologies such as push-buttons [35, 48], touch screens [30, 70],
and computer vision [63, 66, 71] have been employed to create
audio labels and guides on tactile objects. However, the widespread
installation of such systems in museums is limited by costs asso-
ciated with setup, annotation, and maintenance. A cost-effective
alternative is to offer non-interactive touch instructions, which are
adopted by the systems we compare. Our study examines their
effectiveness and discusses their potential further needs.

While both direct (turn-by-turn navigation and screen reader
controls for information) and immersive (spatialized sound naviga-
tion and audio content autoplay) paradigms have been argued as
useful, their effectiveness was never compared within a real mu-
seum context. Our study fills this research gap by comparing them
and investigating the most suitable methodology for the museum.

!https://www.navilens.com/
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3 COMPARING DIRECT AND IMMERSIVE
MUSEUM GUIDES

We conducted a study with seven blind participants to evaluate
direct versus immersive guide systems inside museum exhibitions.
Both systems were installed on an iPhone 12 Pro housed in a hang-
ing case, which the user wore around the neck with the camera
facing forward (Figure 1a). Bluetooth open-ear headphones were
used to allow simultaneous system audio and environmental sound.
To evaluate system performance, we tracked participants’ navi-
gation time and errors, information recall rates, and mistakes in
interacting with tactile exhibits, and collected their feedback.

3.1 Participants

Seven participants (female = 3, male = 4), aged 20 to 67 years (mean
= 50.29, SD = 14.64), were recruited through an e-newsletter for
people with visual impairments and compensated $45 plus travel
costs. Eligibility criteria included total or legal blindness, proficiency
with iPhone VoiceOver, and no prior visits to the exhibition venues.
All participants were totally blind and white cane users. As seen
in Table 1, they were frequent museum visitors: five (P1-P3, P6,
P7) visited 2-3 times annually, while the other two (P4, P5) visited
4-6 times. Five participants (P1-P5) had previously used museum
audio guides, and all were accustomed to the iPhone’s VoiceOver.

3.2 System Implementation and Apparatus

The comparative study was conducted within two exhibition spaces
featuring a variety of tactile exhibits. Each type of museum guide
was implemented in one exhibition, in collaboration with the guide’s
developers and designers. The guides were not compared within
the same exhibition to reduce time and cost in implementation
and to ensure participants experienced fresh routes and content
with each guide. Despite differing contents and paths, we ensured
consistency across exhibitions in the number of stops, lengths of
routes, and quantities of tactile exhibits. We also aligned the audio
content duration for both exhibitions and ensured that the contents
were understandable for middle schoolers and above.

3.2.1 The Direct Guide and a Biology Exhibition. The direct mu-
seum guide is an iOS-based application that provides direct guides
inside a single exhibition. It provides turn-by-turn audio instruc-
tions for navigation and audio descriptions with user-controllable
sequence and flow at the exhibit locations. Leveraging iOS ARKit’s
visual-inertial odometry [8], it tracks user movement and identifies
exhibits via pre-defined image markers [7].

Based on turn-by-turn navigation [2, 76] and adjusted for short
distances between exhibits, it offers three types of guidance ac-
companied by sonification: (1) “Go straight,” followed by a soft
bell sound, “Dinding,” with a consistent pulse delay (the length of
silence between each beep) to signify the action of moving forward.
(2) “Turn Left” or “Turn Right” are followed by a distinct tap sound,
“Pon,” which decreases in pulse delay as the user turns correctly, cul-
minating in a “Ding” sound to confirm correct orientation. (3) “Stop.
You are near the exhibit” signals proximity within one meter of
the target, with potential additional cues for fine orientation ad-
justment. Upon recognition of the exhibit’s visual marker, the app
emits a chime and automatically announces the exhibit’s name.
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A chapter-based screen reader interface facilitates learning about
the exhibit. All descriptions are displayed on the screen and read out
through VoiceOver. The initial chapter provides an overview, direct-
ing users to tactile exhibits with simple instructions, such as “Find
the tactile exhibit on a shelf around waist height” or “Locate the
model on the wall around eye level” The following chapters break
down the exhibit’s information into manageable segments, allowing
users to freely navigate between “previous chapter,” “play/pause,”
“next chapter,” and “next exhibit” at any time. Completion of a
chapter prompts the user to proceed to the next chapter or exhibit.
Accompanying the app, a Bluetooth neckband speaker (Sharp AN-
SS3) is provided, ensuring participants can hear the audio clearly.

The direct guide was implemented in a biology exhibition named
“Cells in Progress,” spotlighting the Nobel Prize-winning iPS cell-
related knowledge and research. The stops in the guide are shown
in Figure 2a. Participants learned the interface at the tutorial stop
(ST) and then proceeded from ST to SO (start location) to become fa-
miliar with navigation. Then they traveled to S1-4 in order, with an
average travel distance of 3.95 m (STD = 1.59 m). The exhibit names,
distances from the previous stop, and the accessibility features of
each stop are summarized in Table 4.

3.2.2  The Immersive Guide and an Earth Science Exhibition. The
other iOS-based app delivers an immersive museum experience
through audio-augmented reality. It navigates users to their desti-
nations with spatialized audio cues and automatically plays crafted
and vivid audio content upon arrival. It senses the environment
and user position through a novel markerless computer vision tech-
nique VPS (Visual Positioning System) [19], a method adapted for
indoor navigation [75], and AR applications [17].

During navigation, the app emits a spatialized audio cue, a soft
bell sound “Dinding” with a consistent pulse delay, from the direc-
tion of the exhibit with an increased volume as the user approaches
it. Upon arrival, a distinctive chime rings, and the auto content
plays. The audio seamlessly integrates vivid, expressive human
voice narration with ambient sounds pertinent to the exhibit, such
as ocean echoes for marine exhibits. Additionally, it provides tactile
guidance (e.g., “Reach out and touch the exhibit. There are balls in a
mesh bag. You can lift the bag to gauge its weight”), with thought-
fully timed pulses allowing users to interact with the exhibit. After
the audio description of the exhibit, navigation to the next one
begins automatically. Due to the neck-hung speaker’s limitations
in delivering spatialized sound, we employed open-ear earphones
(Anker Soundcore AeroFit Pro with a detachable band) to ensure
that users fully experience the immersive audio while remaining
aware of their surroundings.

The app is implemented in an earth science exhibition named
“Planetary Crisis,” which explores the multifaceted aspects of global
environmental issues. Participants received an orientation at Stop T
before beginning their exploration from Start (S0). They progressed
through four stops (S1-S4), spaced an average distance of 3.80 me-
ters apart (STD = 0.99 m). A detailed layout is depicted in Figure 2b,
and information for each stop is summarized in Table 4.

3.3 Procedure

The study was conducted in a single session that lasted for 1.5 hours.
We first conducted a pre-study interview, and then the participants
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Table 1: Participant demographic information.

Blind

. Gender
since

ID Age Museum visits

Museum audio
guide usage

VoiceOver familiarity
(1. Not at all, 7. Very much)

P1 20 2 Male
P2 54 10 Male

2-3 times/year
2-3 times/year

P3 54 26  Female 2-3times/year
P4 50 35 Female 4-6 times/year
P5 49 3 Female 4-6 times/year

P6 58 7 Male
P7 67 50 Male

2-3 times/year
2-3 times/year

3 times
5 times
3 times
3 times
3 times
0 times
0 times

N NN NN

(a) Biology Exhibition Setup

Tutorial

Figure 2: The study environment, including two exhibitions with numbered stops; “T” marks the tutorial stop. Lines illustrate

the navigation routes.

experienced both systems and were asked to recall exhibit informa-
tion. The order of the systems was counterbalanced, where P1, P3,
P5, and P7 started with the direct guide and the rest started with
the immersive guide. Finally, we conducted a post-study interview
to gather user ratings and comments.

3.3.1 Pre-study Interview. Before entering the exhibition for the
study, we conducted a pre-study interview lasting roughly 10 min-
utes. We gathered information about participants’ demographics,
visual condition, museum experiences, and familiarity with museum
audio guides and iPhone’s VoiceOver. We also briefly explained
the study procedure and informed them that after visiting each
exhibition, we would ask them simple questions that required them
to comprehend what they heard rather than just listening passively.

3.3.2  Main Study and Recall Test. Before the study with each sys-
tem, we guided the participants to the tutorial stop and instructed
them to put on the smartphone and earphones, making sure they
were comfortable with them. We next advised the participants to
avoid blocking the camera’s view. They were allowed to use a white
cane, and we might ask them to stop if there were crowds or ob-
stacles in their path. We also informed them that the tutorial was
followed by the main study, which started automatically. Before
beginning with the direct guide, participants were given the option
to adjust the VoiceOver speed. They were also told that while a
skipping function was available, they could skip only one exhibit
for the purposes of the study. The guide usage for both systems
took approximately 15 minutes at normal speed.

After participants completed their use of the guide, we conducted
arecall test in a quiet location. We asked them to describe each ex-
hibit they visited in chronological order using one sentence. Their
answer was marked correct if it matched the exhibit name or acces-
sibility feature listed in Table 4 in the correct order. Each recall test
took approximately 5 minutes. The participant was then escorted
to the next system’s tutorial stop, visited the exhibition using the
system, and subsequently undertook the recall test.

3.3.3  Post-study Interview. We ended the study with an approxi-
mately 20-minute interview, asking participants about their expe-
riences as related to the RQs. Participants gave scores on a scale
from 1 (strongly disagree) to 7 (strongly agree), offered comments
on their preferences, and made suggestions for improvements.

To investigate RQ 1.1, which compared turn-by-turn and spa-
tialized sound navigation within an exhibit, we asked about the
easiness and enjoyment of each type of navigation. Easiness en-
compassed learning and using the navigation, while enjoyment
included feeling enjoyment with a minimal cognitive load. Auton-
omy was not assessed, as neither navigation type allowed partic-
ipants to choose their destinations independently. To investigate
RQ 1.2, which compared screen reader controls and audio auto-
play, we evaluated the easiness, enjoyment, and autonomy of each
type of information provision, where easiness included the ease
of learning and using the method. We then asked the participants
to compare the systems overall and choose their preferred system,
corresponding to RQ1. Finally, investigating RQ.2, we asked about
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Table 2: Navigation events, time, and time differences, in a
format of turn-by-turn/spatialized sound.

ID Assistance required External factors Time for 1 m (diff)

P1 1/0 0/2 3.29/3.66 (+0.37)
P2 1/0 2/0 6.01/3.48 (-2.52)
P3 2/0 1/0 5.92/3.82 (-2.10)
P4 4/0 0/1 7.38/4.75 (-2.63)
P5 1/0 1/0 6.36/4.71 (-1.65)
P6 0/1 11 6.76/4.31 (-2.45)
p7 0/0 0/1 6.62/4.71 (-1.91)

the effectiveness of touch instructions provided by both systems
and solicited suggestions for further improvement.

3.4 Video Analysis

In order to gain an objective understanding of the participant’s per-
formance in navigating, acquiring information, and interacting with
tactile exhibits, two research team members reviewed the recorded
videos. They identified common events that disrupted the smooth
experience, drawing on observations and previous research [2].
Discrepancies in video coding were resolved through additional
video reviews and discussions until they reached a consensus.

Navigation performance was evaluated by counting two types
of events:

o Assistance Required: Additional assistance from the ex-
perimenters was provided when participants needed help
using a feature or making correct turns.

e External Factors: Occurrence of external interference, such
as another person obstructing the path.

Additionally, we measured the average time to travel one meter,
excluding segments with system errors or external disruptions.
This metric served as an indicator of the participant’s travel speed,
movement smoothness, and veering behavior.

Information provision performance was measured by the occur-
rence of assistance:

o Assistance Required: Participants required help under-
standing functions or content, prompting further explana-
tion by the experimenters.

Interaction with tactile exhibits was quantified by two events:

e Not Found: Upon arriving at a tactile exhibit, participants
either failed to locate the intended exhibit within reach or
found something different than what was instructed.

¢ Not Followed: During tactile exploration, participants failed
to follow the audio instructions, touching incorrect locations
and necessitating further guidance from experimenters.

4 RESULTS

4.1 Navigation Performance and Effectiveness

Table 2 summarizes user performance obtained from video analysis.
During navigation, five participants (P1-P5) required additional
assistance with turn-by-turn instructions. Three (P1, P2, and P5)
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continued moving forward despite turning cues, leading to con-
fusing instructions that necessitated guidance for pausing and ori-
entation correction. Two others (P3 and P4) needed reminders to
initiate navigation by pressing the “next exhibit” button. In con-
trast, only one user with spatialized sound sought clarification on
whether to keep the spatial sound directly ahead at all times. En-
counters with crowds occurred for four participants (P2, P3, P5,
P6) using turn-by-turn instructions and another four (P1, P4, P6,
P7) using spatialized sound, with each system eliciting different
responses. With spatialized sound, users were instructed to halt un-
til the way was clear. With turn-by-turn instructions, participants
sometimes experienced confusion during turn instructions, often
requiring assistance to align their orientation to silence the turning
sound, which could be irritating over time. Spatialized sound also
resulted in a faster average travel time per meter (Mean = 4.21 s)
compared to turn-by-turn (Mean = 6.05 s), with participants taking
1.65 to 2.63 seconds less, except for P1. We observed that veering
was common to both systems. With spatialized sound, participants
naturally adjusted their orientation while walking, resulting in a
smoother, curved trajectory. With turn-by-turn instructions, those
who took significantly longer displayed a zigzag walking pattern,
often stopping to reorient themselves after veering off course.
The user ratings of system effectiveness, presented in Figure 3,
indicate that spatialized sound was generally preferred over turn-
by-turn instructions, despite both being positively received. Partic-
ipants rated spatialized sound as easy to understand (median = 6)
and to use (median = 7), while turn-by-turn instructions were rated
lower in ease of understanding and use (median = 5). Confirming
our previous observations, three participants (P1, P2, P5) noted that
turn-by-turn instructions were more time-consuming due to the
need to stop and reorient, a process they found counterintuitive.

A1: “The turn-by-turn guide took me longer because I had to slow
down and turn until the turning sound stopped. With spatialized
sound, I could continue walking toward the sound, adjusting my
direction on the move. It was intuitive.” P5

A2: “(With spatialized sound) I could easily adjust my direction
when I was a little off the track. It made walking easier, since it
resembled my everyday experiences like seeking out a subway
turnstile or a car by following their sounds.” P1

Furthermore, four participants (P1, P2, P4, P5) found turning in-
structions particularly counterintuitive and difficult to understand.

A3: “Tunderstood the tutorial but still felt I needed more practice
to master the turning cues. When the ‘Pon’ sound for turning
came up, I couldn’t intuitively grasp its meaning and how much
I should turn.” P4

Nevertheless, P7 valued the control provided by turning instruc-
tions, enabling precise orientation adjustments. P3 observed that
spatialized sound made it simpler to avoid people, as it was less dis-
ruptive when stopping, providing a clearer acoustic understanding
of the environment.

Regarding enjoyment, participants strongly agreed that spatial-
ized sound was enjoyable (median = 7) and agreed that it posed
minimal cognitive load (median = 6). In comparison, turn-by-turn
instructions were rated as somewhat enjoyable (median = 5) with a
moderately minimal cognitive load (median = 5). One participant
(P4) enjoyed the novelty of navigating with spatial sound, while two
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Strongly Disagree  Neutral Strongly Agree
1 2 3 4 5 6 7

Q11 The navigation functions were A: Turn-by-turn —
" easy to understand. B: Spatialized sound e —
Q12 The navigation functions were A: Turn-by-turn ——-
"~ easy to use. B: Spatialized sound  I—
Q2.1 The navigation functions made A: Turn-by-turn — | | —
" moving through the exhibition enjoyable.  B: Spatialized sound (@) —
Q2.2 The navigation functions demanded A: Turn-by-turn b————{— 1
"~ minimal cognitive effort. B: Spatialized sound o) ——T—

Figure 3: Questionnaire results of navigation easiness (Q1.1, Q1.2) and enjoyment (Q2.1, Q2.2) for A: turn-by-turn and B:
spatialized sound navigation on a Likert scale from 1 (strongly disagree) to 7 (strongly agree).

(P2 and P5) observed that processing turn-by-turn cues increased
cognitive load, diminishing enjoyment.

A4: “With spatialized sound, I could move instantly, so it didn’t
feel it was burdensome. With turn-by-turn, I had to think about
how to turn to the correct direction—I tried moving a bit left,
then right, which I found annoying.” P2

Furthermore, one participant (P3) mentioned that tapping the
“next exhibit” button for each navigation cue with turn-by-turn
instructions was cognitively demanding.

To further enhance navigation, participants suggested several im-
provements. First, they desired more detailed location information
when approaching exhibits to prevent bumping them or stopping
too far away. P7 wanted cues like “Just move forward a little more,”
while P1 and P3 sought information on their exact stop position
within an exhibit, such as on the far left or center, to facilitate find-
ing tactile exhibits. P4 recommended tactile markers on the floor to
help users stop at the correct spot. Second, they hoped the naviga-
tion systems would be responsive to their surroundings. P1 hoped it
could detect and navigate around people, while P5 pointed out that
the immersive system’s background music during navigation could
obscure important environmental cues. Third, they recommended
receiving an overview of the exhibition before exploring individ-
ual exhibits. P6 proposed an initial walk-through accompanied by
others to familiarize themselves with the layout, and P2 proposed
this practice using navigation robots. P2 further expressed a desire
to select specific exhibits themselves for autonomous exploration
inside the exhibition.

4.2 Information Provision Performance and
Effectiveness

Table 3 presents the participants’ recall performance. Using screen
reader controls, three out of seven participants recalled all exhibits
correctly. Three had 75% accuracy, and one had a 50% recall rate.
In contrast, with autoplay, six out of seven participants accurately
remembered all exhibits, and one had a 75% recall rate. Notably,
three participants remembered more information with autoplay
than with screen reader controls. We also observed that while
autoplay maintained a consistent normal speed, all participants
using screen reader controls opted for a faster reading speed. No
participant required assistance for functions or content.

Table 3: Information provision speed, recall rate, and events
occurring during interaction with tactile exhibits, in the for-
mat of screen reader controls/autoplay.

ID Audio speed Recall rate Notfound Not followed

P1 95%/50% 100%/100% 0/0 11
P2 65%/50% 75%/100% 0/1 1/1
P3 80%/50% 50%/100% 1/2 0/2
P4 65%/50% 75%/75% 1/1 1/2
P5 55%/50% 100%/100% 1/0 1/1
P6 55%/50% 75%/100% 1/1 0/1
pP7 65%/50% 100%/100% 1/0 0/1

User ratings of information provision effectiveness are presented
in Figure 4. Participants unanimously agreed that screen reader
controls were easy to understand (median = 7) and autoplay was
also straightforward (median = 7). The two systems were rated as
equally easy to use (median = 7 for both) and enjoyable in learning
the contents (median = 7 for both). Despite having the same median
scores, participant comments highlighted nuanced differences. Four
participants (P2, P3, P4, P6) found that repeatedly pressing the but-
ton for the next chapter could be time-consuming and cumbersome.

A5: “Pressing the button every time was tiring. Holding a white

cane, I had to operate the phone with the other hand. It was
inconvenient since I also wanted to touch the exhibits.” P3

P3 further suggested implementing voice commands for system
operation. Five participants (P1, P2, P4-P6) observed that the iPhone
VoiceOver’s monotone description was inferior to autoplay’s natu-
ral voice narrations with background sounds, potentially impacting
content understandability and enjoyment. P5, however, appreci-
ated the screen reader control’s structured approach to providing
information.

A6: “The natural-sounding narration (in the immersive system)
was easy to understand and enjoyable. The monotone VoiceOver
made long paragraphs boring and hard to remember.” P2

A7: “The controls let me learn step by step. It started with an
overview of the layout, which helped me identify items by touch.
Then I could request more details. Its chapter numbers easily
allowed me to revisit sections I wanted to hear again.” P5
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Strongly Disagree  Neutral Strongly Agree
1 2 3 4 5 6 7
Q The exhibit explanation functions were A: Controls  I—
easy to understand. B: Autoplay 1
Q3.2 The exhibit explanation functions were A: Controls O —
" easy to use in facilitating understanding. B: Autoplay o |
Q4 I enjoyed learning about the exhibit A: Controls (@) —
" using the system. B: Autoplay (@) |
Qs I could learn about the exhibits at my A: Controls | — |
* own pace and based on my interests. B: Autoplay o | o

Figure 4: Questionnaire results of information provision easiness (Q3.1, Q3.2), enjoyment (Q4), and autonomy (Q5) for A: (screen
reader) controls, and B: (audio) autoplay on a Likert scale from 1 (strongly disagree) to 7 (strongly agree).

Strongly Disagree  Neutral Strongly Agree

1 2 3 4 5 6 7

Q I would like to use this system to A: Direct — =
guide me when visiting a museum. B: Immersive (0] |

Figure 5: Questionnaire results of user favorability (Q6) for A: direct paradigm and B: immersive paradigm on a Likert scale

from 1 (strongly disagree) to 7 (strongly agree).

In terms of autonomy, there was a slight preference for screen
reader controls. Participants strongly agreed that they could under-
stand the exhibits of their own interest and at their own pace using
screen reader controls (median = 7), and they agreed it was possible
using autoplay (median = 6). Three participants (P2, P4, P5), how-
ever, felt rushed by autoplay, expressing a preference for paused
narration, particularly when they found something not referred to
in the narration or were engaging with braille displays.

A8: “The immersive system was understandable but didn’t ac-
commodate my pace. When I was touching something, I felt like
I was scrambling to keep up with the narration. Sometimes, I
finally understood the place it referred to when the narration
ended. Thus I appreciate the direct system that can pause and
replay.” P2

Six participants (P1-P6) expressed a desire to replay sections
while using autoplay, and one participant (P7) felt the need to skip
content. Moreover, looking to the future for both systems, P5 wished
for the ability to ask follow-up questions based on the information
received, such as “Could you repeat the name of the cells?”

4.3 Preference

As shown in Figure 5, participants unanimously favored using both
systems for museum visits (median = 7 for both). When asked to
choose between the two, four participants (P1, P2, P4, P6) favored
the immersive system, while the remaining three (P3, P5, P7) pre-
ferred the direct system. Three participants (P1-P3) noted that
it was their first time exploring a museum using an application
designed for independence, and they appreciated the novelty of
both systems. Four participants (P2, P3, P5, P7) favored the direct
system for learning about exhibits, since it allowed them to control
their learning pace by pausing, skipping, and replaying content.

On the other hand, the immersive system was their preferred nav-
igation choice due to its intuitiveness. Three participants (P1, P3,
P7) highlighted the advantage of the immersive system in allowing
them to concentrate while following along. Among them, two (P1,
P3) suggested the potential to integrate the best features of both
systems to provide control as well as ease of concentration.

A9: “With the immersive system, I was pleased that it required no
manual operation. I could follow the spatial sound and focus on
the exhibits. However, with the direct system, I had the flexibility
to modify settings and replay content as needed. A system that
combines both, allowing me to switch between automatic and
manual modes, would be ideal.” P1

A10: “Tvalue the ability to learn at my own pace, but I also want
to maintain focus. Voice commands might be suitable for this.”
P3

4.4 Interaction with Tactile Exhibitions

With both systems providing instructions for users to touch the
exhibits, Table 3 includes user interaction errors observed in the
video. Five participants (P3-P7) failed to locate the touchable exhibit
at least once with the direct system, while four (P2-P4, P6) had the
same difficulty using the immersive system. When attempting to
touch in sync with the audio explanation, four participants (P1, P2,
P4, P5) using the direct system were unable to touch precisely as
instructed—either touching the wrong area or failing to find the
object mentioned. A similar issue occurred with all participants
while using the immersive system.

The rating (Figure 6) showed that participants agreed on the
systems’ capability to assist them in understanding touchable ex-
hibits independently (median = 6). Nevertheless, their comments
indicated a mismatch between the provided information and their
tactile interaction. Four participants (P2, P4, P6, P7) expressed their
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Strongly Disagree  Neutral Strongly Agree
1 2 3 4 5 6 7
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Figure 6: Questionnaire result of the effectiveness of guiding tactile exhibits (Q7) for both systems on a Likert scale from 1

(strongly disagree) to 7 (strongly agree).

uncertainty about whether they touched the correct locations or
missed any element, while the others (P1, P3, P5) reflected on how
they realized they had touched incorrectly only after the explana-
tion had ended. Three participants (P4, P5, P7) expressed a desire
for an introductory overview of the layout of tactile exhibits, and P5
noted that the direct system was more effective because it included
such an overview as an initial chapter, whereas the immersive sys-
tem’s sequential left-to-right guidance could lead to errors if the
starting position were misaligned.

A11: ‘Twant to know if I'm touching the right thing. It’s chal-
lenging with exhibits like the CO2 one (Figure 1e), where items
are placed at varying heights. An overall image including sizes
and the total number of objects would help me avoid missing
things.” P4

Furthermore, three participants (P5-P7) noted that braille was
their only means of verification. To improve interaction, they sug-
gested incorporating hand-tracking feedback (P3, P4, P7), tangible
cues such as tactile arrows (P6), or sounds emitted by the exhibits
(P3) to confirm interaction with the correct elements.

5 DISCUSSION

5.1 Comparing Direct and Immersive Museum
Guide Systems

To address RQ1, our study compared the effectiveness of direct and
immersive guide systems for blind museum visitors. User ratings
indicated both systems facilitated easy and enjoyable navigation
within exhibitions and effective information acquisition about ex-
hibits. Moreover, they supported autonomous learning tailored to
individual interests and pace. Despite overall positive user ratings,
detailed video analyses and user comments unveiled nuanced dif-
ferences in experiences, highlighting preferences and identifying
areas for improvement.

5.1.1 Navigation. From user behavior, we found that spatialized
sound was easier and smoother to use than turn-by-turn guidance.
While five participants needed additional assistance with the turn-
by-turn guide for tasks like turning or initiating navigation, only
one required confirmation while navigating with spatialized audio
cues. Notably, turn-by-turn instructions led to increased veering
and time consumption.

User evaluations also reflected a preference for spatialized sound,
highlighting its ease of use, enjoyable experience, and reduced
cognitive load. Participants particularly criticized turn-by-turn in-
structions’ turning process as being counterintuitive, difficult to
understand, and more cognitively demanding than adjusting ori-
entation during walking using spatialized sound (A1-A4). Despite

prior studies [2, 10, 76] endorsing the turn-by-turn guide for its eas-
iness, our findings suggest that spatialized audio was more suited
to the museum setting, due to the need for fine and frequent orien-
tation adjustments in museums and the simplicity of the sound (A2,
A4). Unlike typical buildings, museum spaces often require varied
turning angles, more challenging than 90-degree turns [3]. Adjust-
ing to these can be time-consuming and cognitively demanding
without physical aids like tactile paving. Spatialized sound facili-
tated smoother gradual orientation changes, which reduced effort
and correspondingly enhanced enjoyment. Furthermore, the sin-
gle, consistent audio cue for walking facilitated straightforward
movement. Conversely, multiple sounds, especially the turning cue
sonification with changing pause delays, was harder to learn and
interpret (A3), echoing previous findings that compared text-to-
speech and sonification [21]. The less intrusive nature of spatialized
sound also proved beneficial during pauses in movement, allowing
better environmental awareness.

However, this study was confined to simple, short paths without
significant obstacles. For more complex routes, turn-by-turn instruc-
tions might be more practical, particularly for precise navigation or
when spatial audio comprehension is difficult, since P7 appreciated
its precision. Future implementations could combine turn-by-turn
instructions with spatialized audio for a balanced, context-sensitive
solution that facilitates intuitive walking toward targets and allows
for more precise directional adjustments when necessary. This hy-
brid approach could be suitable for diverse navigation scenarios
within museum environments.

5.1.2  Information Provision. User ratings indicated that both sys-
tems were user-friendly and engaging, yet recall rate showed a bet-
ter outcome with audio autoplay. This difference could stem from
two factors. First, the lower cognitive load required during navi-
gation with spatial audio may have allowed better memorization
of exhibit contents. Second, autoplay’s vivid and natural narration
and ambient sounds enhanced engagement and comprehension,
particularly with long texts, compared to VoiceOver’s monotone
delivery (A6), echoing findings that enriched audio descriptions
improve user experiences [38, 62].

Another prominent finding was that participants perceived screen
reader controls as offering more autonomy, appreciating their al-
lowance for self-paced learning. Despite users criticizing the repet-
itive effort required to operate the phone to proceed (A5, A9), the
availability of functions like replay and skip was valued. During the
study, even though no skipping occurred, participants frequently re-
played content with screen reader controls, noting that full-exhibit
autoplay was hurried (A8). One participant highlighted screen
reader controls’ chapters, which provided structured content de-
livery from general overviews to detailed explanations, and the
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flexibility to pause (A7). These findings suggest that control options
are essential and that they should be contextually adaptive. Voice
commands could serve as a useful adjunct to the autoplay (A10),
offering user controls when necessary.

5.1.3  Overall. In summary, while immersive experiences were ap-
preciated for their ease and enjoyability, blind visitors also desired
direct controls for autonomy. They hoped for a balance between
them (A9, A10), which could be adaptive to user needs and the
environment.

5.2 Enhancing Interaction with Tactile Exhibits

As museums enrich their tactile exhibits, it is crucial that guide
systems assist blind visitors in independently navigating and com-
prehending these exhibits through touch. Presently, both systems
offer simple touch instructions without interactive feedback. How-
ever, user performance and feedback suggest that such guidance
may not be adequate to effectively support locating and engaging
with the exhibits (RQ2).

First, difficulties in finding tactile exhibits arose if participants
were not positioned precisely as assumed by the instructions. For
instance, a user following the direction to find a tactile exhibit “1 me-
ter ahead” could miss the object if their stopping point was skewed.
This could be improved by narrowing the navigation target zone
or better tracking where users stop and offering relative location
feedback. Adding tactile markers on the floor (e.g., blister paving)
is another simple fix, but it might require users to find them.

Second, when exhibits featured multiple tactile objects or parts,
users often lost track of referenced locations. This issue affected
over half of the participants using the direct system and all of those
using the immersive system. Instructions like “on the far left” could
be ineffective as blind users struggle to gauge the extent and the
boundary, often leading to either insufficient or excessive move-
ment. Braille is the current standard for tactile confirmation, but it is
not accessible to all. Participants often expressed uncertainty about
their touch location and lacked a comprehensive overview (A11).
Tactile indicators or auditory cues associated with different parts
of an exhibit might enhance the touch interaction. However, they
require additional exhibit setups and thorough testing for effective-
ness. Hand-tracking technology on 3D objects can offer adaptive
information [63, 71] and has already been employed in devices like
iPads [64]. Incorporating such technology in museum guides is
needed to enable independent interaction with tactile exhibits.

5.3 Design Considerations for
Smartphone-based Museum Guide Systems

To enhance museum guide systems, we recommend the following
design considerations:

(1) Utilize immersive spatialized sound for navigating short dis-
tances and non-standard angles. When confusion arises or
spatialized audio is inaccessible, switch to turn-by-turn in-
structions for precise guidance.

(2) Automatically provide engaging information using vivid nat-
ural voice and ambient sound upon arriving at an exhibit,
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allowing user control as needed. Organize content into struc-
tured chapters and employ voice commands or buttons for
sequential navigation.

(3) Present an exhibit layout overview and guide users based
on their relative location for seamless tactile exploration.
Provide detailed guidance based on their hand positions for
accurate tactile interactions.

(4) Enable automatic and smooth transition to the next exhibit
once the current interaction concludes or when the user
moves away. Alert users when they are close to the target.

We also suggest enhancing the guide’s adaptability to the environ-
ment and user needs:

(5) Detect the crowds, navigate around them, or pause until
the route is clear with the option to attenuate audio during
waiting times.

(6) Respond to user inquiries throughout the navigation and
exhibit engagement.

6 CONCLUSION AND FUTURE WORK

Our study investigated smartphone-based museum guides for blind
visitors by comparing two emerging paradigms: direct (turn-by-turn
navigation and screen reader controls for information) and immer-
sive (spatialized sound navigation and audio content autoplay). We
evaluated their effectiveness in navigation, information access, and
tactile exhibit interaction with seven blind participants in a science
museum, gathering preferences and suggestions. Although both sys-
tems were favorably rated, user behavior and feedback suggested an
integration of them: enriching immersive experiences with direct
control options and enhancing tactile exhibit engagement.

As the first study comparing different guide system paradigms
in a museum setting, our investigation was limited to qualitative
user experience evaluations with a small participant group, without
a detailed verification of technical specifics. Despite its limitations,
the comparison provides actionable design considerations for future
museum guide systems. Future work should validate these advanced
features with a broader user base in real-world museum contexts.
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Direct or Immersive? Comparing Smartphone-based Museum Guide Systems for Blind Visitors

A DETAILED INFORMATION OF EXHIBITIONS IN THE STUDY

Table 4: Overview of exhibitions, including stops in the guide systems, distances from previous stop, exhibit names, and

accessibility features.

Biology Exhibition “Cells in Progress”
Distance | Exhibit Accessibility features
S1 3.0 Comparing the stem cells Tactile graphs for comparing somatic, ES, and iPS cells’ microscope images
S2 40 Building your body Life-sized fetal development models from conception to 56 days on a shelf;
a 220-day fetus on the wall
S3 6.5 The basic structure of cells A wall-mounted cell structure model accessible at eye level
S4 2.3 Prolonging life with cell research | None
Earth Science Exhibition “Planetary Crisis”
Distance | Exhibit Accessibility features
S1 5.5 Progress of climate change A tactile graph showing global average temperatures from 1850 to 2050
2 3.4 Sea-level surface in the future Two touchable planl'<s §h0W1ng pr9]ected sea levels for 2100 under different
greenhouse gas emissions scenarios
3 3.0 CO2 emission global comparison Thr'ee rows of paskets Wll.ih wooden balls representing CO2 emissions of
various countries and regions
4 33 Stacked wooden blocks Gul'dl.nfg participants to sit and feel the wooden blocks comprising the
exhibition space
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